
Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 1

�� � �� � �

��� 	
 � �
�� � � � � � 	 �

��� � � � � 	� � � � �

Instructor: Prof. Hui Jiang
Email: hj@cse.yorku.ca
Web: http://www.cse.yorku.ca/course/3221

��� �� � �� � !

• Textbook: operating system concepts, 7th edition
• 3 lecture hours each week
• 2 assignments (2*5%=10%)
• 1 project (10%)
• Mid-term (35%)
• Final Exam (45%) (Final exam period)
• In-class

– Focus on basic concepts, principles and algorithms
– Examples given in C
– Brief case study on Unix series (Solaris, Linux)

• Assignments and tests
– Use C language

• Polic ies: see course Web site

" #%$ & # &' #$ () *+ ,�-

• Required textbook

– “ Operating system concepts: 7th edition”

• Other reference books (optional):

– “Advanced Programming in the Unix Environment”
(for Unix programming, Unix API)

– “Programming with POSIX threads”
(Multithread programming in Unix, Pthread)

. , - / , #%0 1$ 2) 03 4

• OS is an essential part of any computer system

• To know

– what’s going on behind the computer screen

– how to design a complex software system

• Commercial OS’s:

– Unix, BSD, Solaris, Linux

– Microsoft DOS, Windows 95/98,NT,2000,XP

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 2

� � � � �� �� �� � � � � �� � �
	 � �� � �

• A program that acts as an intermediary between a user
of a computer and the computer hardware.

• Manage computer hardware:

– Use the computer hardware eff iciently.

– Make the computer hardware convenient to use.

– Control resource allocation.

– Protect resource from unauthorized access.

$ �+ 2 /3) � /) 2 1 / 2)3

� *) ��� *)3 �3 � #3 �

• Instruction execution

• Interrupt

• Three basic I/O methods

• Storage Hierarchy and Caching

��� �� � �� � �
 � !#" � �

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 3

$ �+ 2 /3) � *) ��� *)3

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main Memory

System
Bus

I/O Module

•
•
•

•
•
•

•
•
•

Buffers

I nstruct ion

0
1
2

n - 2
n - 1

Data

Data

Data

Data

I nstruct ion

I nstruct ion

Figure 1.1 Computer Components: Top-Level View

PC = Program counter
IR = Instruction register
M AR = M emory address register
M BR = M emory buffer register
I /O AR = Input/output address register
I /O BR = Input/output buffer register

Execution
unit

� �� � � � � � � � � � � � � � � � � �

�� /3)) 2+ /0

• A hardware signal to interrupt the normal execution
sequence of CPU.

• To notify CPU that an event has happened.

�� /3)) 2+ /0

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 4

� �� �� � � � � � � 	�
 � ��
 � � � � � � �
 � � � � �� �� �� � �� � � �� � �� � �

• Program or subroutine to service a particular interrupt.

• Generally part of the operating system since modern
OS design is always interrupt-driven.

• Determines which type of interrupt has occurred:

• polling

• vectored interrupt system

• Interrupt Vectors: saved in low-end memory space

� � � � � �� � �� �� � �� � ��

• Sequential interrupt processing: Disable interrupts
while an interrupt is being processed

� � � � � �� � �� �� � �� � ��

• Nested interrupt processing: define priority for interrupts.

• A high-priority interrupt preempts a low-priority one.

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 5

� � � ��� � � � � ��� � � � � � �� � 	 � ��
 � � �

• Programmed I/O

• Interrupt-driven I/O

• Direct memory access (DMA)

� �� � �� � � � � � � �

�� �� � �� � ��
 � � ��� � � � � � � ��

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 6

�� �� �� � �� � � �� � � �	
 � �� �� � �� �� � � � ��
 � � � � ��
 � ��
 � � � � �

1

Volatile vs. Persistent

��� � �� ��

• Caching is an important pr inciple in computer system

• Improve access speed with minimum cost

• Caching: copy information to a faster storage system on a
temporary basis.

CPU

cache

Memory

hit

miss

128 Mb

128 Kb

Example:

One memory access 100 nanoseconds
One cache access 20 nanoseconds
If hit rate is 99%, then
(1) 128M memory without cache: 100 nano
(2) 128M cache: 20 nano (too expensive)
(3) 128M memory + 128K cache:

0.99*20+0.01*120 = 21 nano

��� � �� ��

• Why high hit rate?

– Memory access is highly correlated

– Locality of reference

• Normally implemented by hardware.

• Cache Design:

– Case size

– Replacement algorithm: Least-Recently-Used (LRU)
algorithm

– Write policy: write memory when updated or replaced.

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 7

System programs
User Applications

� � ��� �� � � � �

Computer
Hardware

Operating
Systems

CPU Memory
I/O

DevicesStorage

Process
Manage

Memory
Manage

File
System
Secondary

Storage
Management

I/O-System
Manage

Command
Interpreter

System Calls

Users

� � � �
 � � � � � ��
 �
 � �
• A process is a program in execution.

• A process needs certain resources, including CPU time,
memory, f iles, and I/O devices, to accomplish its task.

• The operating system is responsible for the following
activit ies in connection with process management.

– Process creation and deletion.

– process suspension and resumption.

– Provision of mechanisms for:

• process synchronization

• Inter-process communication

• handling dead-lock among processes

� � � �� �
 � � �
 � � � � �
 �
 � �

• Memory is a large array of words or bytes, each with its own
address. It is a repository of quickly accessible data shared by
the CPU and I/O devices.

• Main memory is a volatile storage device. It loses its contents in
the case of system failure.

• For a program to be executed, it must be mapped to absolute
addresses and loaded into memory.

• We keep several programs in memory to improve CPU utilization

• The operating system is responsible for the following activit ies in
connections with memory management:

– Keep track of memory usage.

– Manage memory space of all processes.

– Allocate and de-allocate memory space as needed.

�
 � � � 	 � �
 � � � � � ��
 � � � ��
 �
 � �

• Since main memory (primary storage) is volati le and too small
to accommodate all data and programs permanently, the
computer system must provide secondary storage to back up
main memory.

• Most modern computer systems use disks as the principal on-
line storage medium, for both programs and data.

• The operating system is responsible for the following activit ies
in connection with disk management:

– Free space management

– Storage allocation

– Disk scheduling

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 8

�� � � � �� �� � � �� �

• File system: a uniform logical view of information storage

• A File:

– logical storage unit

– a collection of related information defined by its creator.
Commonly, f iles represent programs (both source and object
forms) and data.

• Files are organized into directories to ease their use.

• The operating system is responsible for the following activit ies in
connections with file management:

– File Name-space management

– File creation and deletion.

– Directory creation and deletion.

– Support of primit ives for manipulating files and directories.

– Mapping fi les onto secondary storage.

– File backup on stable (nonvolatile) storage media.

� � � �

� � � � �� �� � � �� �

• The I/O system consists of:

– A memory-management component that includes
buffering, caching, and spooling.

– A general device-driver interface.

– Drivers for specific hardware devices.

Hardware devices and controllers

Device drivers

Kernel I/O subsystems

Kernel OS Kernel

I/O interface

�� �� � �� � �� �

 � � �

• Protection refers to a mechanism for controlling
access by programs, processes, or users to both
system and user resources.

• The protection mechanism must:

– distinguish between authorized and
unauthorized usage.

– specify the controls to be imposed.

– provide a means of enforcement.

�� � �� � � � � � 	 � � � � � �� �

• Managing CPU usage

– Process and thread concepts

– Multi-process programming and multithread programming

– CPU scheduling

– Process Synchronization

– Deadlock

• Managing memory usage

– Memory management and virtual memory

• Managing secondary storage

– File system and its implementation

– Mass-storage structure

• Managing I/O devices:

– I/O systems

• Case study on Unix series (scattered in all individual topics)

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 9

� �� � � � � � �
 � � � � � � �

�
 � �� � � � � � � � �� � � �

• Background (1 week)

• Process and Thread (2 weeks)

• CPU scheduling (1 week)

• Process Synchronization (2 weeks)

• Deadlock (1 week)

• Memory Management (2 weeks)

• Virtual Memory (1 week)

• File-system and mass-storage structure (1 week)

• I/O systems (1 week)

Totally 12 weeks:

��� 	�
� � �
 � ��� � �� �

� � �� � �� � � �

• System Boot

• Multiprogramming

• Hardware Protection

– OS Kernel

• System Calls

��� � �� � �� � �

• Firmware: bootstrap program in ROM

– Diagnose, test, init ialize system

• Boot block in disc

• Entire OS loading

�� �� � � � � � � � �

� � �

• Automatic job sequencing –
automatically transfers
control from one job to
another.

• OS Kernel:

– init ial control in OS

– control transfers to job

– when job completes
control transfers back to
monitor

• But the CPU is often idle

Memory Layout for a Simple Batch System

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 10

� � � � � � � �� � � � �� � � �

� � �

• Several jobs are kept in main memory at
the same t ime, and the CPU is
multiplexed among them.

• How to implement mult iprogramming is
the center of modern OS

• OS Features Needed for
Multiprogramming

– Some scheduling mechanism – the
system must choose among several jobs
ready to run

– Memory management – the system must
allocate the memory to several jobs.

– Allocation of devices to solve conflicts.

– I/O routine supplied by the system.
Memory Layout for

Multiprogramming System

� � � � � � �� � �� � � � � �

� � � � � � �� � �� � � � � �� � �� � �� � �� � �� � � � � � � � �

 � � �
 � � � � � � � �
 �� � � �

� �� � �� � �� � � � � � �� � � � � �

• Multitasking also allows time sharing among jobs:
Job switch is so frequent that the user can interact
with each program while it is running.

• Allow many users share a single computer

• To achieve a reasonable response time, a job is
swapped into and out of the disk from memory.

• The CPU is multiplexed among several jobs that are
kept in memory and on disk (CPU is allocated to a
job only if the job is in memory).

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 11

�� � � �� �� � �� �� � � � � �

• Dual-mode Protection Strategy

– OS Kernel

• Memory protection

• CPU protection

• I/O protection

�
 � � � � � � � � ��
� �� � �
• Provide hardware support to differentiate between at least two

modes of CPU execution.

1. User mode – execution done on behalf of user processes.

2. Kernel mode (also monitor mode or system mode) – execution
done on behalf of operating system.

• A mode bit in CPU to indicate current mode

• Machine instructions:

– Normal instructions: can be run in either mode

– Privileged instructions: can be run only in kernel mode

• Carefully define which instruction should be privileged:

– Change from user to kernel mode

– Turn off interrupts

– Set value of timer

– etc.

� � � � � � � � � �� �� � � � �� � � �� ��� �

• OS always in kernel mode; user program in user mode

• At boot t ime, CPU starts at kernel mode

• OS always switches to user mode before passing control to user
program

• When an interrupt or fault occurs hardware switches to monitor
mode.

kernel user

Interrupt/fault

set user mode

� �� � �� � �

Kernel space

User space

OS Kernel

User ProgramCommand
Interpreter (shell)

System
Programs

Program
& Codes

Data
structure

Key functions:
Process management
Memory management
etc.

Program
& Codes

Data
structure

Program
& Codes

Data
structure

Program
& Codes

Data
structure

(v ia system calls)

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 12

� � � ��
 �� � � � � � � ��

• Each running program has its own memory space

• Add two registers that determine the range of legal addresses:

– base register – holds the smallest legal physical memory address.

– Limit register – contains the size of the range

• Loading these registers are privileged instructions

• OS, running in kernel mode, can access all memory unrestrictedly
� �� � �� �� � � � � �

• Timer – interrupts computer after specif ied period to
ensure operating system maintains control.

– Timer is decremented every clock t ick.

– When timer reaches the value 0, an interrupt occurs.

• OS must set t imer before turning over control to the user.

• Load-timer is a privileged instruction.

• Timer commonly used to implement t ime sharing.

• Timer is also used to compute the current t ime.

� � � � � �� � � � � ��

• To prevent users from performing illegal I/O, define all
I/O instructions to be privileged instructions.

• User programs can not do any I/O operations directly.

• User program must require OS to do I/O on its behalf:

– OS runs in monitor mode

– OS first checks if the I/O is valid

– If valid, OS does the requested operation.
Otherwise, do nothing

– Then OS return to user program with status info.

• How a user program asks OS to do I/O

– Through SYSTEM CALL (software interrupt)

�

 � � � � � � �

• System calls provide the interface between a running user program
and the operating system.

• Process Control:

– Create, terminate, abort a process.

– Load, execute a program.

– Get/Set process attribute.

– Wait for time (sleep), wait event, signal event.

– Allocate and free memory.

– Debugging facilit ies: trace, dump, time profiling.

• File Management:

– create, delete, read, write, reposit ion, open, close, etc.

• Device Management: request, release, open, c lose, etc.

• Information Maintain: time, date, etc.

• Communication.

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 13

� � � �� � �� � � � � �� � � � � �� � � � �

• Typically, a number is associated with each system call:

– System-call interface maintains a table indexed according to
these numbers.

• Roughly, system calls make a software interrupt (TRAP).

• The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values

• Three general methods are used to pass parameters between a
running program and the operating system.

– Pass parameters in registers.

– Store the parameters in a table in memory, and the table
address is passed as a parameter in a register.

(This approach taken by Linux and Solaris.)

– Push (store) the parameters onto the stack by the program, and
pop off the stack by operating system.

� � � � �
 �
 � � � �� � � �� � � � � � � �

main()
{

_strut_PARA sp;

…

_set_para_(&sp) ;

_system_call_(13,&sp);

…

}

� � � �� � �� � �
� � � �� � � � � � � � 	 � � �
 � � � � �

� � � � � � � � � � �� � �� � � � �

Prepared by Prof. Hui Jiang 2/9/2007

Dept. of CS, York Univ. 14

� � �
 � � � �
 � �
 � � � � ��

• open(), read(), write(), close(), lseek():
#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag) ;

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

#include <unistd.h>

int close(int fd);

#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

�

 � � � � � � � �
� � � �

• System calls are generally available as assembly-
language instructions:

– Some languages support direct system calls,
C/C++/Perl.

• Mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct
system call use.

• Why use APIs rather than system calls?

– Improve portability

– API’s are easier to use than actual system calls since
they hide lots of details

� �� � �� � � � � �� �� �� � �� � �� �

• C program invoking printf() library call, which
calls write() system call

