Prepared by Prof. Hui Jiang 2/9/2007

— GeneralInfo
« Textbook: operating system concepts, 7t edition
CSE 3221 « 3lecturelhours each week
- * 2assignments (2*5%=10%)
perating System . 1 project (10%)
Fundamentals [Midierm (35%)
« Final Exam (45%) (Final exam period)
¢ In-class
— Focus on basic concepts, principles and algorithms
Instructor: Prof. Hui Jiang - Examples giveninC o
e — Brief|case study on Unix series (Solaris, Linux)
Email: hj@cse.yorku.ca . Assignments and tests
Web: http://www.cse.yorku.ca/course/3221 — Use C language
« Policies:|see course Web site

Biobibliography Why this course? |

* Requijred textbook * OS s an essential part of any computer system
— “Qperating system concepts: 7t" edition” * To know
— what’s going on behind the computer screen
» Other reference books (optional): — how to design a complex software system
— “Advanced Programming in the Unix Environment” * Commercial OS’s:
(far Unix programming, Unix API) — Unix, BSD, Solaris, Linux
— “Programming with POSIX threads” — Micfosoft DOS, Windows 95/98,NT,2000,XP

(Multithread programming in Unix, Pthread)

Dept. of CS, York Univ. 1

Prepared by Prof. Hui Jiang

» A program that acts as an intermediary between ajuser
of a computer and the computer hardware.

* Managé computer hardware:
— Use the computer hardware efficiently.
— Make the computer hardware convenient to use.
— Control resource allocation.
— Protect resource from unauthorized access.

Computer Structure

Operating.
System
Designer.

Application Programs

Utilities

Operating System

Computer Hardware

* Instruction execution
* Interrupt
* Three basic /0O methods

» Storage Hierarchy and Caching

Dept. of CS, York Univ.

Computer Hardware

mouse keyboard printer

&

So

/

monitor

CPU

el USB controller
controller

graphics
adapter

memory

2/9/2007

Prepared by Prof. Hui Jiang

CPU Main Memory
g 0
System o 1
Bus 2
Tnstruction .
Instruction .
Instruction
Data
Data
Data
Data
1/O Module . n-2
] n-1
PC Program counter
Buffers IR Instruction register
MAR = Memory address register
MBR = Memory buffer register
1/0AR = Inputioutput address register
1/0BR = Inputioutput buffer register
Computer Components: Top-L evel View

Interrupts

s A hardware signal to interrupt the normal execution
sequence of CPU.

» To notify CPU that an event has happened.

User Program Interrupt Handler

©

Interrupt ——»
occurs here i+l

Dept. of CS, York Univ.

Instruction Execution

Memory CPU Registers | Memory CPU Registers
09«0}~ [Foolrc |00Io40 PC
0[5oET e) AC|
wEos1] WIsaok|mEeat R
940070 63 940[070 0 3]
s41[0 002 941[0°0.0 3]

Siep 1 Siep 2
Memory CPU Registers | Memory
soofi s 4o [Foalec 3oofi 540
ELl R 000 3] ac|305oar
IeEea Soa i |02 oar
940[070 63 940676 0 3
s41[0 002 941[070 0 3]
Siep3 Stepd
Memory CPU Registers | Memory CPU Registers
30019 4 0] [Fozjrc | 300[10 4 g [Foajrec
E [000 S]aclso[ssa1 Ac]
3mzea 294 1|32 041 ®
940[070 03 940070 6.3
941[070 0 2] 94107070 S}
Steps Step 6
0 34
[omode]

Address]

Interrupts

rear
‘Contral x
—— |
EERR
e
—
R
rez
i
e
Processor |
roa

Main
Memory

(a) Interrupt occurs after instruction
at location /v

s

EM

Control
S E—
T }

Intecrupt General

¥+ L [Rewrs] Routine

User's
Program

Main
Memory

by Return from interrupt

2/9/2007

Prepared by Prof. Hui Jiang

Instruction Cycle with interrupts

Fetch Stage Execute Stage Interrupt Stage
* [Interrupts
Disabled
Check for
(i ¥ | Fetchnext Al Execute o interrupt;
ETART ?| instruction ™ " ‘| Mnitiate iterrupt
{Interrupt: sl
Enabled

HALT '

l:l[nstruction Cycle with Interrupts

» Sequential interrupt processing: Disable interrupts
while an interrupt is being processed

Interrupt
User Program Handler X
= //:
: \%_‘:
= Interrupt
= Handler Y
E ==
= -

(a) Sequential interrupt processing e

Dept. of CS, York Univ.

Interrupt Handler

» Program or subroutine to service a particular interrupt.

* Generally part of the operating system since modern
OS design is always interrupt-driven.

» Determines which type of interrupt has occurred:
* polling

 vectored interrupt system

* Interrupt Vectors: saved in low-end memory space

» Nested interrupt processing: define priority for intefrupts.
* A high-priority interrupt preempts a low-priority one.

Interrupt
User Program Handler X

/

—\‘\\“_

’:[Illll IH[N
P

Interrupt
Handler Y
.

(ARRRARRRRANNR)

(b) Nested interrupt processing

2/9/2007

Prepared by Prof. Hui Jiang

I/0 Co

* Programmed 1/O
* Interrupt-driven /O

» Direct memory access (DMA)

mmunication Techniques

Programmed I/0

Interrupt-driven I/0

Error
condition

IIIO —CPU

Icpu — memory

Next instruction

(a) Programmed /0

Dept. of CS, York Univ.

Tssuc Read JCPU — 1/0
command to Do something

1/0 module:

=~ Pelse
- - - Interrupt
1/0 - CPU

Emer
condition

Il/O —CPU

Write word
. ICPU —s memory

Next instruction
(h) Interrupt-driven /0

Next instruction

{c) Direct memory access

2/9/2007

Prepared by Prof. Hui Jiang

registers

[
‘ main memory

‘ electronic disk

‘ magnetic disk

[

‘ optical disk

Il

magnetic tapes

Storage Structure: storage hierarchy

hit

« Caching is an important principle in computer system
* Improve access speed with minimum cost

« Caching: copy information to a faster storage system on a
temporary basis.

Example:

CPU

One cache access 20 nanoseconds
If hit rate is 99%, then

cache

128 Kb

(3) 128M memory + 128K cache:
0.99*20+0.01*120 = 21 nano

| Memory |

One memory access 100 nanoseconds

(1) 128M memory without cache: 100 nano
miss (2) 128M cache: 20 nano (too expensive)

128 Mb

Dept. of CS, York Univ.

storage hierarchy

Level 1 2 3 4

Name registers cache main memory disk storage

Typical size <1KB > 16 MB > 1GB > 100 GB

Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk

technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.26-0.5 05-25 80 - 250 5,000.000

Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 - 5000 20-150

Managed by compiler hardware operating system | operating system

Backed by cache main memory disk CD or tape
Volatile vs. Persistent

* Why hig
— Mem
— Loca

— Case

algor

h hit rate?
ory access is highly correlated
ity of reference

* Normally implemented by hardware.
» Cache Design:

size

— Replacement algorithm: Least-Recently-Used (L

thm

Block Transfer

Word Transfer e
<Ky

Main Memory

~_ _Caching

RU)

— Write policy: write memory when updated or replaced.

2/9/2007

Prepared by Prof. Hui Jiang

OS Overview

Users U@

"\\

System programs Command
User Applications Interpreter
e e T
File
Operating | Process | Memory System | |/0-System
Systems Manage | Manage | Secondary Manage
Storage
Management
i, Zelnnleiniln. ‘duisiinintelnts i ulaieiuieieis A alluiuielel
Computer | 110 !
Hardware ! CPU | | Memory | | Storage | | Devices E

em Calls

Memory
address,
the CPU

Main me
the case

addressg

We keep

connecti
— Kee
— Man
— Allo

is a large array of words or bytes, each with its own
It is a repository of quickly accessible data shared
and I/O devices.

mory is a volatile storage device. It loses its conten
of system failure.

For a pragram to be executed, it must be mapped to absolut|

2s and loaded into memory.
several programs in memory to improve CPU utiliz

The operating system is responsible for the following activit|

ons with memory management:

p track of memory usage.

age memory space of all processes.

cate and de-allocate memory space as needed.

Dept. of CS, York Univ.

by

tsin

ation
iesin

memory

- Pro
*p

*h

Process Management

* A process is a program in execution.

» A process needs certain resources, including CPU
, files, and 1/O devices, to accomplish its task.

» The operating system is responsible for the follow
activities in connection with process management

— Process creation and deletion.
— progess suspension and resumption.

ision of mechanisms for:
rocess synchronization

* Inter-process communication

andling dead-lock among processes

time,

ng

* Since m
to acco
comput
main m

* Mostm
line sto

* The ope
inconn

— Free
— Stor
— Disk

Secondary-Storage Management

ain memory (primary storage) is volatile and too small

mmodate all data and programs permanently, the
er system must provide secondary storage to back
amory.

bdern computer systems use disks as the principal
age medium, for both programs and data.

rating system is responsible for the following activi
ection with disk management:

space management
age allocation
scheduling

ties

2/9/2007

Prepared by Prof. Hui Jiang

File sys
A File:
- log

- ac
Co
for

Files ar

File Management

tem: a uniform logical view of information storage

cal storage unit

mmonly, files represent programs (both source and
ns) and data.

e organized into directories to ease their use.

The operating system is responsible for the following activ

connec

ions with file management:

— Filg Name-space management
— Filg creation and deletion.

— Dir
— Su
- Ma

actory creation and deletion.
port of primitives for manipulating files and directo
pping files onto secondary storage.

— File backup on stable (nonvolafile) storage media.

bllection of related information defined by its creator.

r
object

ties in

ries.

* Pro
acc
sys

Protection System

tem and user resources.

* The protection mechanism must:

distinguish between authorized and
unauthorized usage.

specify the controls to be imposed.
provide a means of enforcement.

tection refers to a mechanism for controlling
ess by programs, processes, or users to both

Dept. of CS, York Univ.

* The I/
- A
bu
- A
— Dri

system consists of:

emory-management component that includes
fering, caching, and spooling.

eneral device-driver interface.
vers for specific hardware devices.

| Kernel | OsKe
i 5
| Kernel /0O subsystems |

C

— Proces
— Multi-p

— Proces
— Deadlo
* Managing
— Memor

— File sy
— Mass-s|
* Managing |
— /0 sys|
« Case study|

* Managing ¢

— CPU sg

* Managing s

tent in thi

PU usage
s and thread concepts
focess programming and multithread programming
heduling
s Synchronization
ck
nemory usage
management and virtual memory
econdary storage
stem and its implementation
torage structure
O devices:
ems
on Unix series (scattered in all individual topics)

2/9/2007

Prepared by Prof. Hui Jiang

Totally 1

e CPUsc

* File-sys
* /O syst

Tentative schedule

(subject to change)

? weeks:

» Background (1 week)
» Process and Thread (2 weeks)

heduling (1 week)

» Process Synchronization (2 weeks)
» Deadlock (1 week)

* Memory Management (2 weeks)

* Virtual Memory (1 week)

ems (1 week)

tem and mass-storage structure (1 week)

— Diagnose, test, initialize system

¢ Boot

* Entire

Several must-know

OS concepts

System Boot

Multip

rogramming

Hardware Protection
— OS/Kernel

System Calls

nlock in disc

OS loading

—_System Boot

» Firmware: bootstrap program in ROM

Dept. of CS, York Univ.

Automatic job sequencing —
automatically transfers
contrgl from one job to

anoth

OS Kernel:

— ini

— caontrol transfers to job

Simpl&BatdrSystemﬁ

or. free memory

tial control in OS

free memory

process

— when job completes command
control transfers back to interpreter
monitor

. . kernel
But the CPU is often idle

command
interpreter

kernel

(a)

(b)

Memory Layout for a Simple Batc4 System

2/9/2007

Prepared by Prof. Hui Jiang

* Several jobs are kept in main memory at
the same time, and the CPU is
multiplexed among them.

* How to implement multiprogramming is
the center of modern OS

* OS Featyres Needed for
Multiprogramming

— Some scheduling mechanism — the
system must choose among several jobs
ready to run

— Memory management — the system must
allocate the memory to several jobs.

— Allocation of devices to solve conflicts.

— /O routine supplied by the system.

process D

free memory

process C

interpreter

process B

kernel

Memory Layout for

MUTtp

rogramming System

Mul Wml e
JOB1 JOB2 JOB3
Type of job Heavy compute Heavy VO Heavy /O
Duration 5 min 15 min 10 min
Memory required 50 M 100 M M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes
1
Uniprogramming Multiprogramming
Processor use 20% 40%
Memory use 33% 67%
Disk use 33% 67%
Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

Dept. of CS, York Univ.

Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
Program C Wait Run Wait Run Wait
A Run | Run | Run mE Run | Run | Run I
Combined A B C Wait A B C Wait
Time
(¢} Multiprogramming with three programs

Time-Sharing Systems (multitasking)
-Interactive Computing

» Multitasking also allows time sharing among jobs:
Job switch is so frequent that the user can interact
with each program while it is running.

* Allow many users share a single computer

» To achieve a reasonable response time, ajob is
swapped into and out of the disk from memory.

* The CPU is multiplexed among several jobs that a
kept in memory and on disk (CPU is allocated to a
job onlly if the job is in memory).

=

e

2/9/2007

10

Prepared by Prof. Hui Jiang

Hardware Protection

¢ Dual
-0

¢ Mem

« CPU

«1/0Op

rmode Protection Strategy
S Kernel

ory protection

protection

rotection

« OS alw

« OS alw
progra

mode.

Dual-Mode Operation (Cont.)

« At boot|time, CPU starts at kernel mode
ays switches to user mode before passing control tp user

« When an interrupt or fault occurs hardware switches to mo

ays in kernel mode; user program in user mode

n
Interrupt/fault

set user mode

Dept. of CS, York Univ.

nitor

Provide hardware support to differentiate between at least two

mo

1.
2.

A mode bit in CPU to indicate current mode
Machinel|instructions:

Carefully| define which instruction should be privileged:

ual-Mode Operation
des of CPU execution.
Usermode — execution done on behalf of user processes.

Kernel mode (also monitor mode or system mode) — execution
done|on behalf of operating system.

Normal instructions: can be run in either mode
Privileged instructions: can be run only in kernel mode

Change from user to kernel mode
Turn off interrupts
Set value of timer
etc.

Kernel space

v
o’ ':.'.«..
... Beennnnna g f
- :(via system calls)
User space

OS Kernel

OS Kernel

Key functions|
Process management
Memory management
etc.

Program Data
& Codes structure

System
Y Command User Program
Programs
Interpreter (shell)
& Codes | | structure & Codes | | structure & Codes | | structure

2/9/2007

11

Prepared by Prof. Hui Jiang

dress.

memory

Memory Protection
« Each runphing program has its own memory space
« Add two registers that determine the range of legal addresses:
— base register — holds the smallest legal physical memory ad
— Limit register — contains the size of the range
0
monitor
256000 base base + limit
job 1
300040 300040
5 address yes yes
job2 base register cPU > <
420940 120900 " "
job3 limit register|
trap to operating system
880000 monitor—addressing error
job 4
11024000
« Loading I{hese registers are privileged instructions
« OS, running in kernel mode, can access all memory unrestrictedly

e To pre
I/O ins

* Userp
* Userp

- 0S
- 0OS

—Ifv
Oth

— The

* How @

— Thi

I/0 protection

vent users from performing illegal I/O, defi
tructions to be privileged instructions.

rograms can not do any I/O operations dire
rogram must require OS to do /O on its be
runs in monitor mode

first checks if the I/O is valid

alid, OS does the requested operation.
erwise, do nothing

2n OS return to user program with status in
user program asks OS to do /O
ough SYSTEM CALL (software interrupt)

Dept. of CS, York Univ.

he all

2ctly.
half:

fo.

e Timer —i
— Time

— Whe
* OS must

e Timer is

CPU Protection

nterrupts computer after specified period t

ensure gperating system maintains control.

r is decremented every clock tick.
n timer reaches the value 0, an interrupt oc
set timer before turning over control to the

» Load-timer is a privileged instruction.
» Timer commonly used to implement time sharing.

also used to compute the current time.

curs.
2 user.

* System c
and the o

* Process
— Crea
— Load

— Wait
— Alloc
— Debu

— creat
* Device M
¢ Informati

System Calls

alls provide the interface between a running user pr
perating system.

Control:
e, terminate, abort a process.
, execute a program.

— Get/Set process attribute.

for time (sleep), wait event, signal event.
ate and free memory.
gging facilities: trace, dump, time profiling.

« File Management:

e, delete, read, write, reposition, open, close, etc.
anagement: request, release, open, close, etc.
bn Maintain: time, date, etc.

« Commun

catior.

ogram

2/9/2007

12

Prepared by Prof. Hui Jiang

Sys

* Roughly
¢ The syst

running

addr
(This

« Typically, a number is associated with each system call:

— System-call interface maintains a table indexed accordin
these numbers.

kernel ar
* Three ge

— Pass
— Store

— Push

em Call Implementati

system calls make a software interrupt (TRAP).

em call interface invokes intended system call in OS
d returns status of the system call and any return v|

neral methods are used to pass parameters betwee
program and the operating system.

parameters in registers.

the parameters in a table in memory, and the table
2SS is passed as a parameter in a register.

approach taken by Linux and Solaris.)
(store) the parameters onto the stack by the progra

gto

alues

na

m, and

ff the stack bv o

erating-svstem
att Ste

pop offthe-stack-by-eper

RG-SY -

Parameters Passing

main()

_strut_PARA sp;

_set_para_(&sp) ;

_system_call_(13,&sp);

System Call — OS Relationship

X: parameters
for call

load address X =
system call 13 =

user program

register

use parameters code for
from table X system|
> call 13

operating system

user

user application

open ()

mode
kernel

system call interface

mode

I open ()
Implementation
i » of open ()
system call

return

Dept. of CS, York Univ.

Use of A System Call to Perform I/0

trap to
monitor

system call n —

resident;
monitor

perform /O

®

return
to user

user
program

2/9/2007

13

Prepared by Prof. Hui Jiang

Some I/0 system calls

» open(), read(), write(), close(), Iseek():
#i ncl ude <sys/stat.h>
#i nclude <fcntl. h>
int open(const char *path, int oflag) ;

#i ncl ude <unistd. h>
ssize_t read(int fd, void *buf, size_t count)

#i ncl ude <unistd. h>
ssize_t wite(int fd, const void *buf, size_t count)

#i ncl ude <uni std. h>
int close(int fd);

#i ncl ude <unistd. h>

they

Application Program Interface (API) rather than dire
system call use.

APIs rather than system calls?

— Improve portability
— API's are easier to use than actual system calls

hide lots of details

2Cct

since

off t Iseek(int fildes, off t offset, int whence)

Standard C Library Example

e C program invoking pri ntf () library call, which
callsjwri t e() system call

#include <stdio.h>
int main ()

{
.
— printf ("Greetings");

return 0;

user
mode

standard C library
kernel

mode
Q/rite () >
B i

write () Ny

(system call)

N I

Dept. of CS, York Univ.

2/9/2007

14

